Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning.

نویسندگان

  • J L Mullor
  • M Calleja
  • J Capdevila
  • I Guerrero
چکیده

In the Drosophila wing imaginal disc, the Hedgehog (Hh) signal molecule induces the expression of decapentaplegic (dpp) in a band of cells abutting the anteroposterior (A/P) compartment border. It has been proposed that Dpp organizes the patterning of the entire wing disc. We have tested this proposal by studying the response to distinct levels of ectopic expression of Hh and Dpp, using the sensory organ precursors (SOPs) of the wing and notum and the presumptive wing veins as positional markers. Here, we show that Dpp specifies the position of most SOPs in the notum and of some of them in the wing. Close to the A/P compartment border, however, SOPs are specified by Hh rather than by Dpp alone. We also show that late signaling by Hh, after setting up dpp expression, is responsible for the formation of vein 3 and the scutellar region, and also for the determination of the distance between veins 3 and 4. One of the genes that mediates the Hh signal is the zinc-finger protein Cubitus interruptus (Ci). These results indicate that Hh has a Dpp-independent morphogenetic effect in the region of the wing disc near the A/P border.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development

The hedgehog signalling pathway is a conserved mechanism which acts in inductive processes in both vertebrate and invertebrate development to direct growth and patterning. In Drosophila, the secreted Hedgehog protein acts as a signal to induce non-autonomous activation in adjacent cells of either the decapentaplegic or wingless genes (both of which encode growth factor-like molecules), via inac...

متن کامل

patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets.

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed...

متن کامل

The Transcription Factor Optomotor-Blind Antagonizes Drosophila Haltere Growth by Repressing Decapentaplegic and Hedgehog Targets

In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets i...

متن کامل

Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling

The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failu...

متن کامل

Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing

BACKGROUND Members of the hedgehog (hh) gene family encode a novel class of proteins implicated in positional signalling in both invertebrates and vertebrates. In Drosophila, the hh gene has been shown to regulate patterning of the imaginal discs, the precursors of the insect limbs. In a remarkably similar fashion, the function and expression of the sonic hedgehog (shh) gene is closely associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 6  شماره 

صفحات  -

تاریخ انتشار 1997